A quick intro to the steps of usiag the xprTk Library (expressions) n the Value Operator.

Value Operator - Expressions Walkthrough
// Lets use that test condition in an actual example - Its not an all powerful example, but
= Vst THE BRTH DPEGNTOR TS 6eoud 77 2 very valid example to learn how to use expressions inside of tyFlow Value Operator sl e T s
— CapRESsimy USAEE. M vant 30 expression to control the Birth “Aount’ in the Birth Operator.
i (x L ¥2 1) 1/ This is our test example from above aligned with a working
< THE s Damowo WOKKATES A VAWE exanple below 3/ e Slick the next to the ‘Asount’ splaner, this glves us access to
amoR HAS BCE EINDLED AND I e Vv o Soteators ich eive o5 bceess 10, sciop ma Eapsacsion bo Sontrel
s TS AFFECTING THE AMDUT i (;

oF PAGTICLES DoRw AN FRAM

il wow
e B o et Jue 0
SERUED s mi ERPRESSOD

This opens the value paraseter access for the value aperatar.

s e Expressios ExAPLE ’ . S
Ik Op T2 DRBWE THE 11/t are using the odulo opeator representes by the 3
T N I oo A ExpRESSION T e e e o yEaes somrasantang’ the £rode. oumbar
& v " Nhnr‘t you see 't' in expressions in the value operator, it is replaced by the frame number
e Acnc Expressions Ransla
/ lets teanslate that formula into plain English
1s¢ AQE_LRRIG THE STHER 12 into :
Wi efAdlT 7717 the' frame. nusber divided by 5 has 3 remainder of zero, the test is true
fResicTcas AT T 7115 the frame nosber divided by 3 has o renainder other than zero, the test 1s false

e
BT // With the test value currently set to ‘5%, we are testing for every Fifth frame € We want 3 mathenatical expression to control the birth amount,
Y * Y %o e Chick the “type: and select -Expression”

TyFlow - Value Operator
Expressions (ExprTK) Reference Guide

Presented by Robert Andersen aka (FireFlight Photo

T tytlow Value Cperatar Expresst DT e Fenctionly —ow 4o Expressions wark In tyrios Value operters 7
L G o e s | s s s o i Valie Cote Ganples: (tebion are 1yl Expreseion Keyords)
Ftome {evant pareicle coumt catome (particle scale svrage) -
\ This returns the cinestider value + 3
pae (articte sg0) soron W TR bt o of estion X prsice s,
: T B0 A e Con cinay vt of the
Yellow text: are the reserved tyFlow keywords used to access those tyFlow (variables) Values . contry l‘ the ‘mar of the nrn‘rvm via a ‘\r,((“' statement (v different colors) b -

Value Operator -

Expressions Walkthrough

UsidG THE RIRTH DPERATOR To &tfowd
EXPRESS(00) USAGE.

. @ < THC Bwe DiaModd [NDICATES A vawe
¢ L OPERATOR HAS REEN EVABLLD AND /W
THIS CASE IT's AFFECTING THEC AMOUNT
OF PARTICLES [RN EAH FRAME.

Tue (RTH peR FrRAME JAWE will now
e DERWILD FRoM AN Er\pQ&'_SS/ocO

emne U THE EXPRESSION EXAMPLE
~ Value ¥
Defautvae: Filodkdefadt 7 o S ~HE

P e seT me VAL

- o || < PARAMETCR VALIE froM AN £1\F/2f555)o/0

Expression
i€ B S The AcTuAL EVPRESSION ForuolA

ey e ARE LEAUWG THE STHER
e PALANCTERS AT THEIE efaola

Ao Shys - USE THC CKQATSSI0N To CALLULATE
HoW MANY QAGTICLES To CARTH €A FRAMT | BT

oNW] For. CRAMLS 1 40 Bo

// Value Operator - Understanding the Expression Toolkit

// In the control structures we get this example - which equates to a
conditional test

A conditional test (the 'if' test)

| +-- The Test We Are performing is against (x)
| |
if (x, y, 2)

| +-- If test is 'false' return 'z'

+----- If test is 'true' return 'y'

Q: What does ‘return’ mean ?

A: This is the value that will be sent back to the operator, the value
can be different based on a true or false test.

// Lets use that test condition in an actual example - Its not an all powerful example, but
// a very valid example to learn how to use expressions inside of tyFlow Value Operator

if (x , VY, z) // This is our test example from above aligned with a working
example below

if ((t %5 =0), 1, 0)
I I l—— // The frame number test was false return the value of zero (9)
I l ————— // The frame number test was true return the value of one (1)
l——(t % 5 = @) // So this is our test (x) replaced with an actual working test
We are using the Modulo Operator represented by the % sign

't' is a reserved variable by tyFlow representing the frame number
Where you see 't' in expressions in the value operator, it is replaced by the frame number

lets translate that formula into plain English
If the frame number divided by 5 has a remainder of zero, the test is true

If the frame number divided by 5 has a remainder other than zero, the test is false

With the test value currently set to '5', we are testing for every fifth frame

// So when you

look at this formula you can denote the following and alter it accordingly

to get many different results

if ((t % 5

// The Above
different

if ((t %2

2), 1, @)

tests for every fifth frame, change that '5' to something else and get a
frame skip ie:

now we are testing every 2nd ('2') frame

In this example if the test is false, we return '©@' which means
birth '@' particles.

Now, this could be changed to some other number, and in that
way you could get creative with the results

The 2nd parameter, the 'y' in our original formula is currently
set to '1'.

meaning when the test is true return '1' which in this example
means birth 1 particle.

changing that value to ie: '2" or '5' or '10' would now mean if
the test was true birth 2,5,10 particles, whichever it was set
to:

//

//

//

if ((t %2 =0), 1, 0)

T +

Something important to note here, both the ‘true’ and ‘false’ return conditions don't have
to be static values, they can be variables calculated on the fly.

You just have to be cautious to follow proper formatting rules, unfortunately tyFlow
Value Operator, doesn't have a proper debugger to help find formatting issues.

It only has a ‘valid’ or ‘non-valid’ expression, indicated at run time ie: when you enter
the formula.

In tyFlow Value Operator Expressions
All ExprTk functions/constants are supported, as well as the following dynamic variables:

&
val

pCount
pECount

pID
pEventInx

pAge
pEventAge

pPosX
pPosY
pPosZ
pPosMag

pMass

pFloat_ XXXX

(current frame)
(current downstream input value)

(total particle count)
(event particle count)

(particle birth ID)
(particle event index)

(particle age)
(particle event age)

(particle position components)

(particle position magnitude)

(particle mass)

pScaleX
pScaleY
pScalez
pScaleAve
pSpinX
pSpinY
pSpinZ
pSpinMag
pVelX
pvelY
pvelz
pVelMag

pMatID

(particle scale components)

(particle scale average)

(particle spin components)

(particle spin magnitude)

(particle velocity components)

(particle velocity magnitude)

(particle material ID)

(particle custom float value where XXXX is the channel name)

Yellow text: are the reserved tyFlow keywords used to access those tyFlow (variables) Values

Lets look at some of the more common operators available in the ExprTK and how to use them.
ExprTK: Arithmetic & Assignment Operators

| += | Increment x by the value of the expression on the right hand side. Where x is either a variable or vector
| | type. (eg: x += abs(y - 2z))

__ o
Decrement x by the value of the expression on the right hand side. Where x is either a variable or vector

| | type. (eg: x[i] -= abs(y + z))

B B e T +

| %= | Assign the multiplication of x by the value of the expression on the righthand side to x. Where x is either a

| | variable or vector type. (eg: x *= abs(y / z))

B el B e e e e +

| = | Assign the division of x by the value of the expression on the right-hand side to x. Where x is either a

| | variable or vector type. (eg: x[i + j] /= abs(y * z))

e B e e e e +

| %= | Assign x modulo the value of the expression on the right hand side to x. Where x is either a variable or

| | vector type. (eg: x[2] %=y ~ 2)

Lets look at some of the more common operators available in the ExprTK and how to use them.
ExprTK: Equalities & Inequalities

e i T e +
| OPERATOR | DEFINITION

dommmmm oo e et +
| == or = | True only if x is strictly equal to y. (eg: x

| +---mmm-- B e T +
| <> or 1= | True only if x does not equal y. (eg: x <> y or x !=y)

e e ettt e +
| < | True only if x is less than y. (eg: x < y)

e e et T +
| = | True only if x is less than or equal to y. (eg: x <= y)

dommmmm oo e et e +
| > | True only if x is greater than y. (eg: x > y)

e e e e T +
| o= | True only if x greater than or equal to y. (eg: x >= y)

dommmmm oo et e T +

These are comparison Operators, in the sense they compare the value on the left to the value
on the right. They return ‘true’ or ‘false’ which also equates to 1 (true) or 0 (false).

Note:

If we write the following in the expression editor:

X = vy; // This does not mean that you are assigning the value in y to x, it means you are
testing if x and y are the exact same value, based on that test, return a ‘true’
or ‘false’ value.

example: 7 =25 // this would return ‘false’

“e

Lets look at some of the more common operators available in the ExprTK and how to use them.

ExprTK: General Purpose Functions Page 1 of 3 (Some of these will be very useful in the expression editor)
B B e e e e e
| FUNCTION | DEFINITION

B B i e e
| abs | Absolute value of x. (eg: abs(x))

B B e e e e e
| avg | Average of all the inputs. (eg: avg(x,y,z,w,u,v) (X +y+z+w+u+v)/6)

Fommmmmmmon B et ettt
| ceil

B B T
| clamp | (eg: clamp(re,x,rl))

B B e e
| equal | Equality test between x and y using normalised epsilon

B B e e et e e
| erf

B B e e e
| erfc

B B
| exp |

B B et e et
| expml | e to the power of x minus 1, where x is very small. (eg: expml(x))

e B e et e e e e
| floor | Largest integer that is less than or equal to x. (eg: floor(x))

B B e e T
| frac | Fractional portion of x. (eg: frac(x))

B B e et
| hypot | Hypotenuse of x and y (eg: hypot(x,y) = sqrt(x*x + y*y))

B B et et
| iclamp | Inverse-clamp x outside of the range r@ and rl. Where r@ < rl. If x is within the range it will snap to

| | the closest bound. (eg: iclamp(re,x,ril)

Hommmmmmen B et e e
| inrange | In-range returns 'true' when x is within the range r@ and rl. Where r@ < rl. (eg: inrange(ro,x,rl)

Lets look at some of the more common operators available in the ExprTK and how to use them.

ExprTK: General Purpose Functions Page 2 of 3 (Some of these will be very useful in the expression editor)

R o oo +
| FUNCTION | DEFINITION

R e B e e e +
| log | Natural logarithm of x. (eg: log(x))

R e e oo +
| logle | Base 10 logarithm of x. (eg: logl@(x))

R e B e Tt +
| loglp | Natural logarithm of 1 + x, where x is very small. (eg: loglp(x))

B +

| log2

R e +

| logn |

R +

| max

R e +

| min | Smallest value of all the inputs. (eg: min(x,y,z,w,u))

R e +

| mul

R e +

| ncdf

R +

| not_equal]|

R +

| pow |

R e +

| root

R e +

| round |

R +

| roundn | Round x to n decimal places (eg: roundn(x,3)) where n > @ and is an integer.

(eg: roundn(1.2345678,4) == 1.2346)

Lets look at some of the more common operators available in the ExprTK and how to use them.

ExprTK: General Purpose Functions Page 3 of 3 (Some of these will be very useful in the expression editor)

[\[e}{:H

Sign of x, -1 where x < @, +1 where x > @, else zero. (eg: sgn(x))

Swap the values of the variables x and y and return the current value of y.
(eg: swap(x,y) or x <=>y)

Not all functions and operators in the ExprTK library are usefull in tyFlow Expression Editor (Value Operators).

All are supported and can be used, it's up to the individual to decide.

Example:

Most of the Boolean Operators, probably don’t have a big usage due to, they all, generally just return a ‘true’ or ‘false’
value . That's not to say they can’t be used.

We don't use ‘strings’ (text) in tyFlow coding, so none of the string section really applies to tyFlow Expressions.

Lets look at some of the more common operators available in the ExprTK and how to use them.

ExprTK: Trigonometry Functions Page 1 of 2

Fommmmmmmmo B e et e +
| FUNCTION | DEFINITION

e m o m i m i m e m s m e oo +
| acos | Arc cosine of x expressed in radians. Interval [-1,+1] (eg: acos(x))

B B et e e R +
| acosh | Inverse hyperbolic cosine of x expressed in radians. (eg: acosh(x))

Fommmmmmmoo m o m i m i m o e e oo +
| asin | Arc sine of x expressed in radians. Interval [-1,+1] (eg: asin(x))

fommmmmmmmo B e e +
| asinh | Inverse hyperbolic sine of x expressed in radians. (eg: asinh(x))

Arc tangent of (x / y) expressed in radians. [-pi,+pi]

Lets look at some of the more common operators available in the ExprTK and how to use them.

ExprTK: Trigonometry Functions Page 2 of 2

Lets look at some of the more common operators available in the ExprTK and how to use them.

ExprTK: Control Structures Page 1 of 2 (These are conditional tests and can be powerful in Expressions)
e B e et
| STRUCTURE | DEFINITION

Fommmmmmmo B e T T e
| if | If x is true then return y else return z. eg: 1. if (x, y, z) 2. if (x > y) z; 3. if (x <= 2*y) { z + w };

B B e e e e
| if-else | The if-else/else-if statement. Subject to the condition branch the statement will return either the value of

the consequent or the alternative branch. eg:
1. if (x > y) z; else w; 2. if (x > y) z; else if (w != u) v; 3. if (x <y) { z; w+ 1; } else u;

| |

| |

R e B et e
| switch | The first true case condition that is encountered will determine the result of the switch. If none of the

| | case conditions hold true, the default action is assumed as the final return value. This is sometimes also

| | known as a multi-way branch mechanism. eg:

| | switch

| [1

| | case x > (y + z) : 2 * x / abs(y - 2z);

| | case x < 3 :osin(x + y);

| | default A

| [}

Fommmmmmmo B et T e
| while | The structure will repeatedly evaluate the internal statement(s) 'while' the condition is true. The final

| | statement in the final iteration shall be used as the return value of the loop. eg:

| | while ((x -= 1) > @)

| | £

| | y i= X + z;

| | W= U+ y;

| [}

Fommmmm oo B et T e e
NOTE:

These are multi-line statements, tyFlow has a simple single line editor. We can still do multi-line structures like this,
we just have to format them properly. We will show an example of this later.

Lets look at some of the more common operators available in the ExprTK and how to use them.

ExprTK: Control Structures Page 2 of 2 (These are conditional tests and can be powerful in Expressions)

B e e B e et
| STRUCTURE | DEFINITION

Fommmmmmmo B e T T e
| repeat/ | The structure will repeatedly evaluate the internal statement(s) 'until' the condition is true. The final

| until | statement in the final iteration shall be used as the return value of the loop. eg:

| | repeat

| | y 1= x + 25

| | Woisu +y;

| | until ((x += 1) > 1e0)

R B e e e e
| for | The structure will repeatedly evaluate the internal statement(s) while the condition is true. On each loop

| | iteration, an ‘'incrementing' expression is evaluated. The conditional is mandatory whereas the initialiser

| | and incrementing expressions are optional. eg:

| | for (var x := 0; (x < n) and (x != y); x += 1)

| | £

| | yi=y+x/2-z;

| | W= u+y;

| [}

Fommmmm oo B et T e e
NOTE:

There are more control structures than this available in the ExprTK library, but | think these are the main ones we
would most likely use in a tyFlow Expression.

Thats most of the reference guide for ExprTK as it applies to tyFLow, but you can always resource the full
documentation for anything left out here

A quick intro to the steps of using the ExprTK Library (expressions) in the Value Operator.

=) i P lJof 5
i Example: e °

Ll

We want an expression to control the Birth ‘Amount’ in the Birth Operator.

A/ We click the diamond next to the fAmount’ spinner, this gives us access to
the Value Operator, which gives us access to using an Expression to control
birth Amount

This opens the value parameter access for the value operator.

B/ Click the small diamond to the left,
drag until new value shows,
let go of mouse button, a new

Erent 00 @

Value Operator has now been =
assigned to the ‘birthPerFrame’ B
Parameter.

= We now have created a Valé; Operator with default settings.
olue 00 & S =\ % * *

= By default, the mode is ‘Value’ with a Value of €1.0°
At these default settings we are birthing 1 particle per
frame.

C/ We want a mathematical expression to control the birth amount,
so we click the ‘type’ and select ‘Expression’

A quick intro to the steps of using the ExprTK Library (expressions) in the Value Operator.
Page 2 of 5

D/ We can now create an ‘Expression’ to control the ‘birthPerFrame’ (# of birthed particles)
You can see Type, now says ‘Expression’

and you can see a default value of €1’ has been
entered in the ‘Expression’ Editor

E/ Expression Editor Usage

Clicking the question mark, brings up
the Expression Editor help info.

This is really just information on the
tyFlow specific variables to access
tyFlow parameters via code ie: f‘position”’

Clicking the box to the right
of the Expression, brings up
a larger Editor window.

It also informs you where to get ExprTK
Help

Regardless of which editor window we are using, And gives an example Expression
it is a very basic one line editor with basic
debugging.

. Valid Code Syntax Error (problem with Expression)

Clean code (valid) will just show the expression v

Bad Code (non valid) will show the error message X%

The MaxScript listener really isn’t helpful for debugging

A quick intro to the steps of using the ExprTK Library (expressions) in the Value Operator.

F/ Let’s see some example code and understand the single line Expression Editor

Page 3 of 5

At this point, forget what can be done via standard input box options, we are trying to understand
what can be done via

The ‘Default’

Expression is

‘expressions’

€12

and how we create those

‘expressions’

(in the below example, this means birth 1 particle per frame)

Because we have the birth operator set to birth from frame 1 to frame 80, this expression results in
80 particles in total or 1 per frame over 80 frames.

birthPerFrame Ve

% v o0 B &

mE [
- Value . .
et
Defauitvabe: Pockdefalt + =
& sin frame) Operation: et -

Result at frame 100 |

Now, change the €1’ in the expression editor and replace it
‘t’ which returns the value the time slider is at, on frame
So now on each frame we are birthing an amount of particles

with the tyFlow reserved variable name
1 that would be 1, frame 2 would be 2 etc.
equivalent to the frame number,

accumulitive over 80 frames, this now equals 3240 particles in total.
T Revhames 5
R .
ot
Defat vake: blck deast
Operation: Set. &l
vake
: Expresson v
‘Expression
¢ t =
00 0 ..:

While very basic, we can see we can use expressions to control particle blrth and we have also seen
an example of accessing tyFlow reserved variables, in this case ‘t’ for time slider count value.

A quick intro to the steps of using the ExprTK Library (expressions) in the Value Operator.

G/ Let’s Get more complicated

At the beginning of this help we showed and broke down an
and show what it looks like in max.

if
The expression will be:

conditional statement,
if((t % 10

Page 4 of 5
lets adjust it

0, 20, 0)

In plain english, birth particles only on every 10th frame, birth 20, don’t birth anything in between.
v) [o
* Ve
box -
Default value: Pblock default - .
Operatn: 5ot .)
Value >
Type: Expression -
Expression . v
(% 10.=0), 20,0) =i

Variaton% (0.0 i o

‘Result at Framé 100

What we can mainly see here is
actively moving, we can’t tell

the particle count matches the math,

they were born every tenth frame,

but unless you saw the timeslider

lets visually change that with a new

expression, this time we will add a material id operator and control material with an expression

[eetporicemo] o 2 | Keviames Srdrd] ook S 1 .
= 5‘2’:.."."""’ + Material
Defaultvalue: Phlockdefault Layout
= Operation: Set = Material #14 L 2
" O\ gy
Type: Expresson - L
Expression l M
Rl [5 Blioms —
.
Varston% v 0.0 EE Pt /' -
*s . \ *
5 ‘- '-
| Aduat v (=) Result at Frame 45 |
The formula for the material ID: switch { case t = 10 1; case t = 20 :2; case t = 30 :3; default 4;}

So if the time slider is 10 (color 1), 20 (color 2), 30 color 3,

all others (default) color 4.

A quick intro to the steps of using the ExprTK Library (expressions) in the Value Operator.

Page 5 of 5
H/ Lets explain the ‘switch’ statement which is from the ExprTK library and how to implement multiline
code in a single line editor.

switch { case t = 10 : 1; case t = 20 :2; case t = 30 :3; default : 4;}

If a test matches a case statement, return the value for that case statement, if no case statements
match, then return nothing, if a default line is included, that will be the return value when no case
statements match.

Lets show the case statement in a more readable multiline format, to visualize and explain further:

Switch
{

case £ = 10 3§ 13 This line says, if the frame number is 10 set the material ID to 1

case t = 20 : 2; This line says, if the frame number is 20 set the material ID to 2

case t = 30 : 3; This line says, if the frame number is 30 set the material ID to 3

default : 4; This ‘default’ option in a switch statement, is like a catch all, if no case
} statements match assign this default color. In our case all particles birthed

after frame 30 will be given a default color of green.
The semi-colon (;) At the end of each line, is how you define a line end in code.

In plain english: ‘t’ is a reserved tyFlow keyword that returns the current frame number, so
case t = 10, means if the timeline is at frame 10, return the value after the colon sign (:),
In this case that value is 1, return 1.

You can see, because of the simplicity of the Expression Editor (single line), code in it can quickly
look more complicated than it is. Sometimes you might want to break down complex code in a separate
document to understand it better before just coding directly in the Expression Editor

A BASIC EXPRESSION EXAMP|LE

@=" % Material

Birth 56@p (Red) Birth 5@0p (Blue) Birth 500p (Yellow)
FRAME 5 FRAME 10 FRAME 15 FRAME 20 FRAME 25 FRAME 30

Birth 500p (Green)
FRAME 35 FRAME 40 FRAME 45 FRAME 50

RAME 60

|Expressicn for each Value Op

| (e % 10 = 0), 500, 0) |

| B waterial 0 (statiq

| icvalue

H o

FRAME: 65 " » 2",
It’s a fairly basic example, but a valid example of controlling particles via Expressions.
The first thing we do, is birth bursts of particles every 10 frames using an ‘if’ statement.
2nd, we control the speed via a ‘switch’ statement ever the faster at later groups of frames.
3rd, we control the color of the particles via a ‘switch’ statement (6 different colors).
The main thing here was just to show usage of Value Operator Expressions.

Float Talk - Using the tyFlow Reserved Variable fpFloat_XXXX’ To Access Custom Float Data

¥ When we look at the tyFlow Screen on the left,

we see we are saving Custom Float Data to a
% channel called ‘myValue’.

We can also see we are just setting a hard
*'coded value of ‘1’

But, it doesn’t have to be by
value, you can access the other
values from the drop down list.

So, this example shows the way
you access custom float data
from within an Expression.

We can see to make it work,
we replace the XXXX with the
name of our channel (myValue)

% We can see in the expression operator, we have
it set to expression and it’s pulling the
value from a custom float called ‘pFloat_myValue’

% Obviously, this current example is not very dynamic,
because we are setting a hard code value of €1’

Functionally - How do Expressions work in tyFlow Value Operators ?

At the end of the day, a value is ‘returned’, ie: passed back to the operator, but
a value is returned. We can only return one value, so no matter the complexity of the
expression, always remember, only a single value will be returned at any one time.

Valid Code Examples: (Yellow are tyFlow Expression Keywords)

t+1 \\ This returns the timeslider value + 1

pCount \\ This returns total particle count

Val \\ This returns the original spinner value before passed to the
value operator.

abs (pPosX) \\ This returns the absolute value of Position X particle data,
which is the non-negative value

round(pPosMag) \\ This returns the nearest integer (non decimal) value of the
particle position magnitude

if(t<>10, 1, 5) \\ This returns 1 for all frames other than 10, returns 5 if we

are on frame 10

IMPORTANT:

The ExprTK editor formatting differs from C# or Scripting code in how it uses the ‘==,
=’ and other equality or assignment symbols, just be aware to reference the ExprTK guide
if unexpected errors or things happen. For existing coders, the format is different to
what they are used to.

We have covered Expression Basics - There is more to it!

We covered the Expression part of it, which is
what this coding tutorial was about. We left all
other parameters at default, meaning only the
expression return value was used as returned.

T =

The ‘returned’ value can be altered by the
settings below the expression editor.

Thats a topic for a different video, but making
changes in any of the options eg: variance /
relative to / absolute / normalize / clamp /

retarget, will alter the Expression value
returned.

TyFlow - Value Operator
Expressions (ExprTK) Reference Guide

Presented by Robert Andersen aka (FireFlight Photo)

I have a tyFlow Course on Udemy Titled
TyFlow Basics - The Missing Manual

If you want to Support me, so I can create more content,
that would be the way to do it. It is very affordable and I

am constantly adding more content to the course.

	Text Step Through Value Op - Pg 00
	Text Step Through Value Op - Pg 01
	Text Step Through Value Op - Pg 02
	Text Step Through Value Op - Pg 03
	Text Step Through Value Op - Pg 04
	Text Step Through Value Op - Pg 05
	Text Step Through Value Op - Pg 06
	Text Step Through Value Op - Pg 07
	Text Step Through Value Op - Pg 08
	Text Step Through Value Op - Pg 09
	Text Step Through Value Op - Pg 10
	Text Step Through Value Op - Pg 11
	Text Step Through Value Op - Pg 12
	Text Step Through Value Op - Pg 13
	Text Step Through Value Op - Pg 14
	Text Step Through Value Op - Pg 15
	Text Step Through Value Op - Pg 16
	Text Step Through Value Op - Pg 17
	Text Step Through Value Op - Pg 18
	Text Step Through Value Op - Pg 19
	Text Step Through Value Op - Pg 20
	Text Step Through Value Op - Pg 21
	Text Step Through Value Op - Pg 22
	Text Step Through Value Op - Pg 23
	Text Step Through Value Op - Pg 24
	Text Step Through Value Op - Pg 25

