
Simulation

Understanding the Simulation Loop

tyFlow’s simulation loop is evaluated in the following way:

For each time step of the simulation:

1) The optimal order of events in the flow is found, by doing a depth-first search of connected events, starting

with events that contain birth operators.

2) The ordered events are processed in ascending order, by evaluating the event’s operators from top to bottom.

NOTE: Certain operators may have their evaluation deferred until later in the loop. Particle Physics
operators set to “integration” mode are only evaluated during the bind solver step. Collision operators are
also only evaluated after all other operators and non-PhysX solvers have been evaluated.

3) Once the events have been processed, the bind solver is evaluated. Cloth binds, particle binds, and any

Particle Physics operators set to “integration” mode are evaluated.

4) Once the bind solver is finished, the wobble solver is evaluated. The wobble solver calculates spring forces

applied to particles created with a Wobble operator.

5) Once the wobble solver is finished, the actor solver animates the transforms of any actor rig particles that

have animation clips applied to them.

6) Once the actor solver is finished, all accumulated particle velocity and spin values are integrated into the

system.

7) After velocity/spin integration, PhysX objects are processed. Internal PhysX rigidbodies have their

position/velocities matched to their corresponding particles and the PhysX solver is evaluated.

8) Once the PhysX solver is finished, some final adjustments are made to the simulation. The bind solver checks

to see if any particles should be put to sleep, the age of all particles is incremented, appropriate particles are

cached, etc.

Simulation Validity

Under normal circumstances with moving particles, the simulation is history-dependent. This means that in

order for the simulation state at time [t] to be known, the simulation state at time [t - timestep] must also be

known. This also means that any given simulation state in those circumstances will only be valid for one

timestep. As soon as the time changes, the simulation state changes, rendering the previous state invalid.

The exception to this case is if there are no changing properties in the simulation. If nothing is changing, then

the simulation state at all times will be the same because the simulation is static.

When the simulation is initialized, tyFlow iterates over all operators and queries them for the types of changes

they will make to the simulation. If every single operator reports that it does not make changes to particles over

time, then tyFlow will recognize that the simulation will remain static forever once all new particles have been

birthed. This makes tyFlow a very efficient geometry scattering tool, since static particles that are scattered in a

scene will not have to be continually evaluated after they are birthed.

NOTE: Grey text labeled: “Static: [range]” appears in the bottom left corner of the editor and displays info
about which frames of the simulation are static, or tells you if the simulation is never static.

Getting Started

Creating a new tyFlow particle system

To create a tyFlow scene object, navigate to

Create→Standard Primitives→tyFlow within the

modifier panel and choose a location in the scene to

place the object.

NOTE: The location you choose to place your tyFlow object does not matter – all tyFlow calculations
happen in World-Space (not Object-Space), so the object’s transform will have no effect on the simulation
or display of the particles.

Using the Editor

The editor is where flows reside within a tyFlow object.

Opening the Editor
With the tyFlow icon selected in any viewport, go to

the modifier panel and scroll down to open editor and

click the button

To open the editor for a particular tyFlow object, select ‘Open Editor’ from the modifier panel or “Editor…” for

a particular object in the tyFlow viewport menu.

NOTE: Unlike Particle Flow, which features a single editor for all flows in the scene, tyFlow objects each
have their own editor.

NOTE: The size and position of each editor window is saved to the scene file, and will be restored when
loading the scene. If an editor is saved to an off-screen location, it will be automatically centered inside the
current window

Navigating the Editor

By using your middle mouse button and scroll wheel, you can pan and zoom in the editor. Left-click can be

used to select events/operators/connections/etc, and right-click can be used to display relevant context menus.

The grid view is where all flows are constructed. The operator list below the grid view displays all available

operators. The rollout panel to the right of the grid view displays all settings for any operator that is selected.

NOTE: The pan and zoom value of each editor window is saved to the scene file, and will be restored when
loading the scene.

Right-click Menus
Various right-click context menus will appear when

right-clicking the grid view, events, or operators.

While most right-click menu options are self-

explanatory, a few may require some further details:

Operator right-click menus:
• Paste Instanced: operators that are pasted

as instances will share all settings with the

operator they were copied from. This menu

item will only appear if an operator has

previously been copied.

• Make Unique: choosing this option on an

operator that is an instance of another

operator will make its settings fully

independent from that other operator.

Therefore, from that point on it will no

longer be an instance of the other operator.

This menu item will only appear when

right-clicking on an instanced operator.

• Make Instances: if multiple operators are selected, the operator that was right-clicked will become the

data source of all the other operators which are selected. In other words, all operators that are selected

will lose their current settings and be made instances of the operator for which this option is chosen.

This menu item will only appear if multiple operators of the same type are selected.

TIP
“Make instances” is an easy way to transfer settings between existing operators. For example, if you have
two independent operators of the same type and you want them to have the same settings, instead of
deleting one and copy/pasting the other in its place, simply select them both and choose “make instances”
on the one whose data you want to copy to the other. The other operator will be instantly converted into an
instance of the one you right-clicked. In that sense, “make instances” is shorthand for “make all of the other
selected operators of the same type instances of this one”.

Editor hints
The editor displays various bits of information around its frame to assist users in diagnosing different behaviors of the

flow.

A blue outline around the frame
of the editor means that realtime
caching is enabled. “Caching
enabled” will also appear in the
bottom left corner.

A red outline around the frame
of the editor means that the flow
has been disabled. “Simulation
disabled” will also appear in the
bottom left corner.

A yellow outline around the
frame of the editor means that
the flow is in render-only mode.
“Simulation enabled (Render
Only)” will also appear in the
bottom left corner.

A pink outline around the frame
of the editor means that the flow
is logging its simulation progress
to disk. Relevant information
about the location of the log will
also appear in the bottom left
corner.

Grey text labeled “Static:
[range]” appearing in the bottom
left corner displays info about
which frames of the simulation
are static.

NOTE: A static frame is a frame which requires no additional simulation steps because it contains particles
which do not change over time. A completely static flow with no moving particles will only need to evaluate
a single simulation step, allowing for fast updates and timeline scrubbing.

Viewport Menu

tyFlow features a viewport menu (located in the top

left corner of the active viewport) that will

automatically be displayed when any tyFlow objects

are present in the scene, and will be automatically

hidden when no tyFlow objects are present in the

scene. It can be used to quickly access and control

available tyFlow objects, with options to

enable/disable, hide/unhide, refresh, select and edit

them. Options also exist to select/hide/unhide all

existing tyFlow objects at once.

The viewport menu also displays the current version

number of the tyFlow plugin file installed on the

machine.

NOTE: Using the viewport menu to access tyFlows in the scene is often much easier than manually
navigating to them through the viewport or scene explorer, and is part of an efficient workflow.

Creating Flows

Flows are groupings of operators, events and connections between them. They allow you to direct the behavior

of particles over time.

Creating Operators

To create a new operator,
drag an operator from the
operator list into the grid
view.

An operator dragged into an
existing event will be added
to that event’s operator list.

An operator dragged directly over the grid will be added to a new event. Operators can also be copied and

pasted (from their right-click menu), and the same rules apply – operators pasted over the grid will be assigned

to a new event, and operators pasted into an existing event will be added to that event’s operator list.

NOTE: You can copy and paste multiple events and/or operators at the same time, by selecting them with
the drag marquee, or by holding CTRL to individually select more than one at a time.

Creating Events

Events themselves cannot be created directly – only copied and pasted (from their right-click menu) or created

by a dragging an operator over the grid.

NOTE: When a new event is created it will automatically be assigned a new Display operator, if necessary.

Creating Connections

Connections between operators and events allow you

to direct the behavior of particles over time. If an

operator’s output is connected to an event’s input,

any particle that satisfies the test condition of the

operator will be sent to the connecting event at the

end of the operator’s simulation step. The direction of

a flow is always forward (from operator to event) –

operators can send particles to events, but events

cannot send particles back into operators.

An event can take inputs from multiple operators, but

an operator cannot output particles to multiple events.

NOTE: tyFlow correctly handles event looping, where an operator is connected to a prior event, such that
particles loop back to that same operator within the same timestep (normally resulting in an infinite loop
that can never complete). No extra measures need to be taken to avoid infinite looping in those cases, as
tyFlow will automatically ensure only a single loop is completed per timestep in such a scenario

Shaping connection wires

By right-clicking on a connection wire, you can add

or remove points to it.

By dragging those points, you can shape the wire,

allowing you to visually route wires around events in

the grid.

Preset Flows

In the right-click context menu of the grid

view, you can find a “New” submenu that

lists several preset flows which can be

created.

Creating a new preset flow will not reset

the editor or affect existing flows – it will

merely add the selected preset flow to the

editor. Relevant scene objects used to

control preset flow properties will also be

created, depending on the preset chosen.

tyFlow Object Settings

tyFlow objects are what contain the events and operators requires to create and compute

particle simulations.

Each tyFlow object contains a variety of global

settings which can be used to tune simulations, or

export particles to various formats.

These settings can be accessed within the modifier

panel.

We will go through each rollout category in the sidebar to find information about a particular setting.

Main Settings Rollout

Enabled state dropdown: controls whether the
flow is enabled, enabled (Render Only), or
disabled. Disabled flows do not evaluate at all,
while enabled (Render Only) flows only evaluate
at render time.

 Show icon: controls whether the tyFlow object’s icon is

visible in the viewport.

 Icon size: controls the size of the tyFlow object’s icon in the

viewport.

 Show name: controls whether the name of the tyFlow object

is displayed in the viewport.

Multithreading

 Thread count: controls the maximum number of CPU

threads the flow can use to evaluate the simulation.

 Auto: allows tyFlow to determine the maximum number of

threads to use to evaluate the simulation (defaults to max. available)

Note: Setting thread count to a particular value doesn’t mean that number of threads will be used for every
operation, only that tyFlow may not exceed that particular number of threads for a given operation. Some
operations benefit from more threads and some with less, and tyFlow makes internal determinations
regarding the actual number of threads to use on a per-algorithm basis (with the only constraint being the
maximum value provided by the user here).

Time Step

Time step dropdown: controls the number of steps

the simulation will divide each frame into. With more

time steps, simulation accuracy will be increased but

simulation speed will be decreased. A value of

‘Frame’ is usually fine for simulations that don’t

require physical accuracy. A value of “1⁄4 Frame” or

“1⁄8 Frame” is best for simulations featuring

physically accurate constraints (sand/cloth/rope/etc)

in order to increase overall simulation stability.

 Time scale: the time scale setting allows you to control

the speed of the simulation. Unlike the retimer settings, which allow you to

control playback speed after the simulation is cached, the time scale setting

allows you to control simulation speed as it is calculated. Values less than one

have the effect of slowing the simulation, and values greater than one speed

things up.

Note: Increasing the time scale value can lead to physics/PhysX inaccuracies,
because increasing the value increases the velocity of all particles within the
time step. You would only use this setting, as opposed to using the retimer, if
you need to change the simulation speed of particles while maintaining the
speed of all scene objects your particles are interacting with.

 Interpolate ticks: controls whether particle transforms will be

interpolated at ticks between time steps.

Network rendering

Abort on version mismatch: Rendering tyFlows on machines whose tyFlow

version does not match the version of the originating scene file is usually a bad

idea. While it doesn’t guarantee problems, if the scene file relies on a feature

not present in the version on the render machine, the scene may not render

correctly. If this setting is enabled, renders will be automatically aborted on

machines whose tyFlow version does not match the scene file, avoiding

incorrect renders in the process.

Note: It is always recommended to use the most recent version of tyFlow.

Allow caching: Controls whether render machines will cache frames while the

simulation is processed on them prior to rendering. In most cases this should

be left on, and only disabled if a particular render machine has enough RAM

to process the simulation, but not enough RAM to cache each processed frame.

Disabling this can greatly increase render time of complex simulations if

multiple frames of the simulation are accessed in descending order (for

example, in the case of a simulation retimed to play in reverse, or multiple

flows referencing each other with staggered frame offsets).

Cache Settings Rollout

tyFlow’s realtime timeline caching allows for smooth playback of a simulation in the viewport after it has been

computed.

Note: Caches are saved on a per-frame basis, and do not adhere to the simulation’s time step setting (the
simulation itself will still run at whatever time step interval is chosen, but the cache will only save values
once per frame). tyFlow will still interpolate the subframes of cache data if the flow’s “interpolate ticks”
setting is enabled, but if you need to playback your flow with sub-frame accuracy, you should disable
caching.

Cache

Enable Caching: controls whether realtime timeline caching is enabled or

disabled.

Clear Cache: clears the contents of the cache and effectively resets the

simulation.

Cache channels

[Channel name - data type]: lists the available channels to save with the cache,
and their corresponding data type.

Data types and their corresponding size in bytes:

byte = 1 byte

int16 = 2 bytes

int32 = 4 bytes

float16 = 2 bytes

float32 = 4 bytes

Note: The number in square brackets next to some data types represents
the number of values that must be stored for that particular channel. For
example, a position channel requires X/Y/Z values, each of which is
stored as a float32 data type. So the size in bytes for a particular particle
position value is 12 bytes (float32 x 3 values).

Mapping values are stored as a float32[3] x the number of mapping channels

assigned to the particle.

Custom float data values are stored as a float32 x the number of custom float

data channels assigned to the particle.

Custom vector data values are stored as a float32[3] x the number of custom

vector data channels assigned to the particle.

Custom TM data values are stored as a float32[12] x the number of custom

TM data channels assigned to the particle.

TIP:
You can estimate how much RAM will be required to cache a particular flow by using the following
equation:
(number of particles) x (number of frames) x (total size of all saved channels in bytes)
For example, a simulation of 1 million particles over 250 frames which caches particle positions and velocity
will require approximately 7GB of RAM. This resulting value should only be considered an estimate, since
caching requires some extra overhead not contained within any particular channel. The amount of overhead
varies depending on the complexity of the flow and is displayed in the Cache rollout.

WARNING:
Caching can use a lot of RAM up very quickly, depending on the complexity of your flow. If your machine has
limited RAM and you are planning on simulating many millions of particles, it is best to turn caching off and
instead export the particles to disk using tyFlow’s available export options. tyFlow makes no effort to check
whether RAM allocations are possible on a given system, which means that if your RAM is full and tyFlow
needs more of it in order to continue a simulation, tyFlow could cause crash. This ‘fast and loose’ approach
to simulating is by design, and it is up to the user to ensure their system is capable of handling the
simulations they are trying to run.

Particle Bind Solver Settings Rollout

tyFlow’s particle bind solver is what solves all inter-particle bindings (aka constraints or joints) within tyFlow

(excluding PhysX bindings). At its core, a binding is just a relationship between two particles, and solving many

bindings in succession is what gives rise to intricate behaviors seen in materials like dirt, wet sand, cloth, ropes,

etc. Proper tuning of the bind solver is important when simulating these complex systems.

Solver Settings

 Steps: controls the number of sub steps per simulation
time step to solve all active bindings.

Note: The total number of evaluations per binding per frame can be
calculated as (bind steps) x (simulation time steps). The higher the total
number of evaluations, the more accurate the solver results will be. For
granular simulations, a simulation time step of either “1⁄4 Frame” or “1⁄8
Frame” with bind solver steps of 5-10 is often adequate. For hires cloth
simulations, bind solver steps may need to be much higher in order to
maintain cloth stiffness.

 Stepped force integration: controls whether particle

velocities are smoothly added to the bind solver per step, or added only once

prior to all bind solver steps. Keeping this enabled has a very minor

performance impact but can reduce high velocity artifacts in the resulting

simulation.

 Strict determinism: with this setting turned on,

successive runs of a simulation should return identical results. With this

setting off, there is no guarantee that bindings will be evaluated in the same

order or that race conditions between multiple threads will be prevented, and

so results across multiple simulations may vary. Turning this setting on can

have a detrimental performance impact, so it’s recommended to keep it off,

unless you need the simulation to produce identical results across successive

runs.

WARNING: If you plan on rendering across multiple computers, “strict determinism” must be enabled or
else the frames returned by different machines will not be in sync. An alternative to rendering with
determinism on is to instead cache out your particles locally and then render a tyCache/PRT/etc loader
instead of the tyFlow object itself.

If you choose to render your tyFlow with “strict determinism” on across multiple machines, make sure all
machines have consistent OpenCL support. If you have OpenCL acceleration enabled but not all machines
that you are using support OpenCL, mixing CPU/GPU solvers can impact determinism even with “strict
determinism” enabled.

TIP:
It is generally a better practice to render a cache of your flow instead of your tyFlow object itself, when
rendering across multiple machines. Rendering a cache ensures that hardware differences between
computers have no impact on the consistency of the final output.

Solver Settings (continued)

Partition bindings: controls whether bindings will be split into non-overlapping

groups, before being solved in a multithreaded manner. Turning this setting off

can decrease simulation time, at the cost of increased error accumulation over

time. This setting has no effect when OpenCL acceleration is enabled, because

OpenCL acceleration requires partitions.

Deterministic partitioning: controls whether the partitioning process must avoid

threaded race conditions. This setting can usually be disabled for granular flows,

but should usually be enabled for cloth/soft-body flows to avoid jittering artifacts.

OpenCL acceleration: if an OpenCL2.0-compatible GPU device is found on the

system, this option will be available. OpenCL acceleration can increase

simulation performance, depending on the power of the available GPU. When

enabled, all bindings will be solved on the GPU instead of the CPU.

Note: Enabling OpenCL acceleration does not guarantee a performance boost. There is a fair amount of
overhead involved in transferring data to-and-from the GPU during the simulation, that can offset the actual
speed boost the GPU offers during its calculation phase. While an overall increase in performance should be
expected for very high-end GPUs on systems with few CPU cores, a system with many CPU cores and a low-
end GPU may not see much of a performance boost with OpenCL at all. Results will vary across hardware
and users must experiment to determine if OpenCL acceleration is right for them. It is not a magic bullet
solution.

Collision Compensation

During each simulation step, collisions are always processed after bindings. No solid geometry collisions are

processed while the bind solver evaluates bindings each bind solver step. Because of this, it’s possible for the

bind solver to pull particles straight through colliders, only for the subsequent collision step to fix those

intersections afterwards. However, even though those intersections are eventually fixed, the rest of the bindings

remain unaware that such a collision ever took place, and this can cause visual artifacts within the overall bind

network. To compensate for this, particle masses can be artificially adjusted when collisions are detected on the

previous simulation substep. Collided particles can be given a heavier mass, so that they won’t be pulled as

forcefully by their connected particles. Once previously-collided particles are determined to have no more

collisions, their mass will return to normal. The combination of these effects can help reduce visual artifacts in

binding networks (like cloth).

Mass multiplier: The multiplier applied to the (inverse) mass of particles that

collided on the previous simulation step. The smaller the value, the less influence

surrounding bindings will have on a collided particle.

Interpolation: The interpolation speed used to transition particle masses between

the collision compensation value and their original value. Keeping this value low

can help prevent jittering artifacts caused by the masses of collided particles

switching between the compensation value and their original value too quickly.

Particle Sleeping

By enabling particle sleeping, you can force low-velocity particles to come to a standstill when they would

otherwise keep moving over time. This can prevent unwanted motion in particles and forcibly bring jittering

particles to rest.

Velocity thresh: particles whose velocity magnitude is below this threshold will

be considered candidates for sleep.

Min duration: candidate particles whose velocity magnitude remains under the

velocity threshold for this duration of time will be put to sleep.

Wake thresh: sleeping particles whose velocity exceeds this value at the end of a

time step will be awoken.

Energy transfer: the amount of neighbor-particle energy that can contribute to

waking a particle.

Relative to time step: Multiplies threshold velocities by the time step.

INFO:
Because velocities are integrated each time step, wake/sleep thresholds may be too large by default if your
time step is less than 1. For example, if your gravity strength is -1.0 and your sleep threshold is 0.5, particles
will not fall asleep when your time step is 1 frame. However, if your time step is 1⁄2 frame, particles will fall
asleep because at each substep their velocity is increased by 0.5 instead of 1.0 (which matches the sleep
threshold). If “relative to time step” is enabled, the wake/sleep thresholds will be multiplied by the time
step delta, and so in this example the effective threshold would actually be 0.25 (0.5 * 1⁄2) per step.

NOTE: Particle sleeping has no performance impact. Its impact is purely visual. Sleeping particles will still be
evaluated by the solver – the difference is that if they are considered asleep at the end of a time step, they
will be returned to their previous location (effectively rendering them motionless).

PhysX Rollout

These controls affect all PhysX rigid bodies in the simulation.

Solver

PGS/TGS: controls which PhysX solver to use in the simulation

INFO: Information about each solver (Projected/Temporal Gauss-Seidel) can be
found on NVidia’s PhysX website. TGS is a relatively new addition to PhysX, and
is typically faster than PGS for rigid body simulations, but can produce
unexpected results when solving PhysX bindings (constraints). In general, it
should be treated as an experimental solver, and PGS should still be used by
default.

World

Default gravity: controls whether a default gravity force will be applied to

all PhysX particles.

Gravity value: controls the strength of the default gravity force.

Ground collider: controls whether a default ground collider will be added to

the PhysX simulation.

Height: the height of the default ground collider, in world-space.

Restitution: the restitution of the default ground collider.

Static friction: the static friction of the default ground collider.

Dynamic friction: the dynamic friction of the default ground collider.

Simulation groups: the simulation groups that will be affected by the

ground collider

Simulation

Substeps: the number of substeps that will be calculated per time-step for the
PhysX simulation.

TIP:
Increase substeps to increase the overall accuracy of the simulation. For
high-fidelity simulations, a value of 12 or higher may be more
appropriate than the default value.

PhysX Rollout (continued)

Simulation (continued)

Pos iterations: the number of position iterations that will be used to solve

joint/contact constraints, per rigidbody, per substep.

Vel iterations: the number of velocity iterations that will be used to solve

joint/contact constraints, per rigidbody, per substep.

TIP:
Increase pos/vel iterations to reduce jittering when simulating particles
with PhysX bindings.

Inertia mult: this is a multiplier which affects all PhysX particles’ inertia.

Higher values can increase simulation stability while decreasing angular

acceleration/deceleration. Lower values increase angular

acceleration/deceleration, but can lead to jittering or other instabilities. For

smaller objects with low mass, this value can be lowered (0.5 - 1.0). For

bigger objects with a lot of mass, it should be kept high (5.0 - 20.0).

Kinematic collision pairs: controls whether inter-penetrating particle

rigidbody pairs that are set to ‘kinematic’ or ‘trigger’ will generate contacts.

Multithreading: controls whether the PhysX engine will make use of

multiple CPU threads.

CCD: controls whether continuous collision detection is enabled or disable.

Continuous collision detection can prevent collision tunnelling between

high-velocity rigidbodies, for a performance cost.

CCD steps: controls the number of substeps used to resolve collisions by

the CCD engine.

CUDA: controls whether PhysX computations will be accelerated with

CUDA.

INFO:
In order for CUDA acceleration to work, tyFlow requires that two DLL
files (PhysXDevice64.DLL and PhysXGPU64.DLL - both available on the
tyFlow download page) be placed in the same folder where the tyFlow
DLO file is loaded from.

NOTE: CUDA acceleration does not always guarantee faster simulations. Due to performance costs related
to transferring necessary data to-and-from the GPU, speed benefits from CUDA might not be apparent until
hundreds/thousands of rigid body particles are in the simulation. When a simulation has only a few rigid
body particles, CUDA acceleration being enabled may actually decrease overall performance.

 Memory MB: the amount of GPU memory to allocate for CUDA computations.

INFO:
Setting the CUDA memory limit higher than the default value does not mean the simulation will run faster.
The memory limit controls the amount of VRAM to allocate for constraint/contact processing, and generally
a CUDA simulation does not require much VRAM in order to process all contacts, even if a lot of rigid bodies
are present in the simulation. Setting this value very high is usually unnecessary, and can actually contribute
to slowdowns at the beginning of the simulation, due to the time it takes to initially allocate the VRAM. Just
because you have a GPU with a lot of VRAM, does not necessarily mean you should increase this setting
from its default value. For reference, the default value suggested by NVidia is approximately 140mb.

 Print errors to listener: controls whether to print PhysX simulation errors (reported

internally by the PhysX engine) to the MAXScript listener.

Sleep thresholds

Velocity thresh: Particles with a linear/angular velocity below this threshold

at the end of the time step will be candidates for sleeping.

Min duration: Particles which satisfy the velocity threshold for this number of

frames will be put to sleep.

NOTE: Strange behavior can occur if particles with PhysX Bindings are put to sleep, therefore particles with
PhysX Bindings will ignore the sleep threshold settings.

Retimer Rollout

The tyFlow retimer can be used to retime an entire simulation. By animating the retimer playback frame value,

you can choose what part of the simulation plays back over the course of the timeline. Subframe values will be

correctly interpolated by the retimer, allowing for smooth slow-down or speed-up effects.

Enable simulation retimer: controls whether simulation playback will be

controlled by the retimer frame value.

Retime type: controls whether the retimer affects playback frame or speed.

By frame

Frame: the retimer frame value that controls simulation playback. Animate

this value to control the current playback frame.

By speed

Speed %: the percent value that controls simulation playback speed.

Ref Frame: the reference frame that the speed multiplier will be relative to.

INFO:
Setting a proper reference frame is important for the speed multiplier. The reference frame should typically
be the start frame of your playback sequence, not necessarily the start frame of the simulation.

The equation for the speed retimer is:

playbackFrame = [referenceFrame + abs(time - referenceFrame) * speed * sign(time - referenceFrame)].

TIP: The speed value is not animatable. If you need a variable playback speed, use the retimer in “frame”
mode instead.

Interfaces

Each tyFlow is able to export “I_PARTICLEOBJ” and “I_VRAYGEOMETRY” interfaces to 3ds Max. In

some cases, enabling these can cause issues between tyFlow and other plugins. In other cases, you might want

to limit which particles are sent back to a particle query request. These settings allow you to override these

interface exports.

ParticleObject Interface

Enable Particle Interface: controls whether the particle interface will be

returned when the tyFlow object is queried for its default interface.

Returning this interface allows third-party plugins to query a tyFlow for its

particles.

Incl. legacy interface: when enabled, 3ds Max’s legacy particle interface

(I_PARTICLEOBJ) will be enabled, as well as its modern interface

(IParticleObjectExt).

Note: Disabling the “incl. legacy interface” setting can improve
compatibility with certain 3rd party plugins.

Export groups: controls which particle export groups will be returned when

a tyFlow is queried for its particles. Use these groups to limit which particles

will be sent to third-party plugins querying a tyFlow for its

I_PARTICLEOBJ interface.

Particle scale queries

When a 3rd party plugin asks tyFlow for the scale of a particle, these options let you choose what property of

the particle is returned.

Return scale: the explicit scale value of the particle will be returned.

Return shape diameter: the diameter of the particle’s shape mesh will be returned.

VRay Interface

Enable VRay Interface: controls whether the I_VRAYGEOMETRY interface will be returned when the

tyFlow object is queried by VRay for its VRay-compatible interface.

TIP:
For example, if you have a PhoenixFD grid which uses a tyFlow as a PHXSource input object, you might
only want to use certain particles in the flow to affect the PhoenixFD simulation. By limiting the particles
exported through the I_PARTICLEOBJ interface (by setting the desired export groups), you can limit which
particles will be returned to the PhoenixFD object.

Help Rollout

The Help rollout contains links to the official tyFlow documentation, as well as the official tyFlow discussion

forums.

Debugging Rollout

This rollout contains controls which allow users to profile and debug various aspects of a flow.

MAXScript Listener

Print simulation summary: controls whether a summary of flow details

will be printed to the MAXScript listener each time a sequence of frames is

simulated.

Print simulation details: controls whether a verbose list of simulation

timing details will be printed to the MAXScript listener each time a sequence

of frames is simulated.

Print GPU mesh details: controls whether a verbose list of timing details

will be printed to the MAXScript listener regarding the time required to

upload tyFlow meshes to the GPU for display.

Print GPU particle details: controls whether a verbose list of timing details

will be printed to the MAXScript listener regarding the time required to

upload tyFlow particle transforms to the GPU for display.

Note: Simulation details can provide useful insights into the time
required to complete each step of the simulation process. If a simulation
is running slowly, you can view the simulation details to see which
operator or function is taking the most time to process.

Computing simulation details has a minor performance cost, and printing
simulation details to the listener is a slow process, so these settings
should remain disabled unless you are actively trying to debug or profile a
simulation.

Print simulation reset info: controls whether information about changes to input
objects is printed to the MAXScript listener.

TIP:
Every time a flow’s input objects change, the flow’s simulation is reset to
account for the changes. Sometimes a buggy input object may send
rogue notifications to the flow, announcing it has changed, even though
hit has not. This can cause a flow to continually reset its simulation in an
undesirable manner. Enabling this setting can help users figure out which
objects are sending change notifications to the flow.

Print editor keycode: keycodes of keys pressed in the editor will be printed

in the MAXScript listener.

Print bind partition errors: if a bind partition contains adjacent constraints,

an error will be printed to the MAXScript listener.

Note: Partition error printing is a developer setting that should generally
be kept off - it involves extra calculations that will slow down the
simulation, and doesn’t provide any useful information to regular users.

Print while playing: controls whether simulation summaries or details will

be printed to the MAXScript listener during timeline playback. Keeping this

setting disabled will maximize viewport playback speed, by suppressing

messages while playback is occurring.

Log to file: simulation profiler data will be saved to a log file on the hard

disk.

OpenCL

Print OpenCL Info: pressing this button will print a list of available

OpenCL devices and their properties to the MAXScript listener.

Re-initialize OpenCL: rebuilds OpenCL programs and kernels. In case of

an OpenCL error during simulation, OpenCL must be re-initialized before it

can be utilized again.

Allow unsafe allocations: allows OpenCL to try to allocate more VRAM

than the default allocation limit (which is 1⁄4 of total VRAM), where

necessary.

Input Mesh Data

These settings allow users to see visual properties of a flow’s input meshes

in the viewport. The resulting markers represent the exact data held in RAM

by the flow in its custom tyMesh object format, not necessarily the raw data

contained within the input objects’ Mesh objects. Usually, there should not

be a discrepancy between the two, but these options will allow you to see if

there is.

Display wireframes: manually draws the wireframes of all input meshes in

the viewport.

Display face normals: manually draws the face normals of all input meshes

in the viewport.

Face normal size: controls the overall length of the drawn normals.

Display velocities: manually draws vertex velocity vectors of all input

meshes in the viewport.

Display vertex indices: manually draws vertex index numbers for all faces

of all input meshes in the viewport.

Display vertex positions: manually draws vertex position values of all input

meshes in the viewport.

Display face indices: manually draws face index numbers for all faces of all

input meshes in the viewport.

Bounding box

Inflate: manually inflates the bounding box of the tyFlow object by the

specified value.

INFO:
By default, the bounding box of a flow encapsulates all of its particle
positions. In order to maximize performance, the bounding box does not
encapsulate the shape mesh of each particle, merely the particle’s
volumeless 3D position in space. Due to this optimization, if all of the
particles of a flow are positioned outside of a viewport’s frustum, the
entire flow may be culled from display even if the shape meshes of
particles are large enough to overlap the interior of the frustum. By
manually inflating the bounding box of a flow to account for the size of its
particle meshes, you can ensure that the flow will not be culled from
viewport display even if no particle positions are in view.

Miscellaneous

Ignore .abc notifications: Ignores rogue change notifications sent by

imported Alembic files.

INFO:
Max’s default Alembic importer sends rogue change notifications to its
dependent objects when the time slider is moved. Enabling this setting
will ignore those notifications, and prevent tyFlow simulations which are
dependent on Alembic objects from resetting each time the time slider is
moved.

Expand editor rollout: some Windows display configurations can result in

the tyFlow editor rollout being cropped improperly. Enabling this setting

and increasing the percentage spinner will increase the width of the editor

rollout.

%: the percentage (relative to default width) to increase the editor rollout.

Note: This is a sticky setting that will persist across max scene files.

About Rollout

The About rollout contains copyright information, a link to Tyson Ibele’s website, as well as third party license

information.

Update Rollout

The Update rollout gives you the ability to check online to see if the installed version of tyFlow is older than

the latest available version.

Operators

Each of these operators will be covered in the following pages:

Birth operator

The Birth operator is the simplest operator for creating new particles over time.

Start/End: controls the time range in which to birth new particles.

Total: (Count) controls the total number of particles to birth over

the time range.

Per frame: (Count) controls the number of particles to birth per

frame over the time range.

Repeater:

 Repeater particle count

Count: controls the number of particles to birth per interval.

Variation %: the per-particle percentage of variation to

apply.

Repeater duration

Frames: controls the number of active birth frames per

interval, within the overall time range.

Variation: the per-particle amount of variation to apply.

Repeater interval

Frames: controls the amount of time to wait between birth

intervals.

Variation: the per-particle amount of variation to apply.

TIP

The repeater is useful for repetitive particle birth sequences. For example, imagine you wanted to shoot 50

particles into the scene, every 20 frames. You would enable the repeater and set count to 50, duration to 1

and interval to 20. Using the repeater avoids having to setup multiple birth operators to achieve the same

outcome.

Birth Burst operator

The Birth Burst operator allows you to define multiple unique birth events, aka “bursts”.

Particle Birth Bursts:

Birth burst list: the list of all active birth bursts.

Burst Settings

Start/End: controls the time range in which the selected burst will

birth new particles.

Total: (Count) controls the total number of particles the burst will

create over the time range.

Frame (Count) controls the number of particles the burst will

create per frame over the time range.

Simulation groups

Simulation groups: controls which particle simulation groups will

be assigned to the particles in the burst.

Export groups

Export groups: controls which particle export groups will be

assigned to the particles in the burst.

Custom float

Value: the custom float value to assign to the particles in the burst.

Channel: the custom float data channel the value will be assigned

to.

TIP

The Birth Burst operator is a more efficient alternative to creating multiple unique birth operators in order to

birth distinct groups of particles.

Birth Flow operator

The Birth Flow operator allows you to birth new particles that are copies of particles from another flow.

Source flow

• Flow object: the tyFlow object whose particles will be

copied.

Initial reference frame

Frame: the initial frame of reference that the input flow object

will be evaluated at.

Simulation Groups

Controls which particle simulation groups will be read from the

input flow object.

Channels (If available)

Controls which particle data channels to copy from the input flow

object’s particles.

NOTE: Birth Flow cannot import bindings/cloth/PhysX
data/actor-dependencies/etc from other flows. Only data
from the selected channels will carry over.

Particle birth

Start/End: controls the time range in which to birth new

particles, copied from the input flow object.

New particles only: controls whether only new particles will be

birthed each frame. A particle is considered new if its input ID

has not been processed on a previous frame.

TIP
Birth flow operators are useful for optimizing the initial states of flows. For example: imagine a flow that
computes a voronoi fracture on 1000 particle meshes at frame 0. Every time a property of that flow is
changed, the flow’s simulation will reset and the voronoi fracture will be recomputed in the process. To
avoid having to wait for the fractures to initialize each time the flow property is changed, a secondary flow
could be created that uses a birth flow operator in order to copy the fractured particles from the first. Each
time the second flow’s properties change, the voronoi fracture of the input flow will not have to be
recomputed as well. And each time the first flow’s settings change, the second flow will be automatically
updated in the process. In this way, flows can be connected together in order to minimize recomputation
costs of complex initial state parameters.

Birth Fluid operator

The Birth Fluid operator can be used to birth particles inside of a (Phoenix FD) fluid grid based on grid voxel

and particle properties.

Fluid Birth

Fluid object: the input fluid grid object.

Start/End: controls the time range in which to birth new particles.

Input grid channels

Temperature: when enabled, grid cells with a temperature value

above 300 will be able to spawn particles.

Smoke: when enabled, grid cells with a smoke value above 0 will

be able to spawn particles.

Velocity: when enabled, grid cells with a velocity value above 0

will be able to spawn particles.

Fire: when enabled, grid cells with a fire value above 0 will be able

to spawn particles (FumeFX only).

NOTE: The higher the temperature/smoke value per cell, the
higher the probability that a particle will be spawned in the cell.

Rate: The theoretical rate of particles births that can happen per

simulation step, given a per-cell probability of 1. The actual rate of

particle births will be lower, and the birth probability per-cell is

dependent on the total smoke and temperature values of each cell.

Thresholds

Enabling these channels will override the default cell spawn

probabilities.

Temperature/Smoke/Velocity/Fire: the threshold override

channels.

Min/Max/Variation: the range of values for each selected channel

that will control how many particles are spawned in each cell.

Input Particle Channels

PhoenixFD grids can contain both voxels and particles. To birth

particles that will be copies of PhoenixFD grid particles, enable the

relevant particle channels.

Channels: enabling these channels will birth copies of particles

contained within them, if such particles are available in the cache

of the input object.

Channel percentages: controls the percentage of copied input

particles to birth.

New only: controls whether only new particles will be birthed each

frame. A particle is considered new if its input ID has not been

processed on a previous frame.

Uniqueness

Seed: the seed value for all varied parameters.

Birth Intersections operator

The Birth Intersections operator allows you to birth new particles at places where the geometry of input objects

intersects.

Birth Intersections

Start/End: controls the time range in which to birth new particles at

intersection points.

Threshold: affects the density of particles birthed on two

intersecting faces by multiplying the density value by the ratio

between this value and the length of the overlap between the

intersecting faces.

Density: controls the base number of particles to birth over each

intersection, prior to adjustments made relative to the threshold

value.

Variation %: the per-particle percentage of variation to apply.

INFO:
The number of particles birthed on any given intersecting face
can be estimated as:
(density) x (length of intersection overlap / threshold).

Mode

A > A: this mode will compute intersections between objects in

Geometry List A.

A > B: this mode will compute intersections between objects in

Geometry List A and Geometry List B. Intersections between objects

in the same group (A > A or B > B) will not be computed.

Position

Offset: controls the amount of offset along face normals to position

the birthed particles.

Variation %: the per-particle percentage of variation to apply.

Velocity

Enable velocity: controls whether velocity along face normals is

added to birthed particles.

Velocity value: the amount of velocity along face normals to add to

birthed particles.

Divergence: the angle of divergence applied to velocity vectors.

Variation %: the per-particle percentage of variation to apply.

Settings

• Include self-intersections: controls whether self-

intersections will be computed for objects.

Uniqueness

• Seed: the seed value for all varied parameters.

Birth Objects operator

The Birth Objects operator allows you to convert scene objects into particles.

Objects

Object list: the list of input objects which will be converted into

particles.

Inherit object geometry: controls whether the meshes of input

objects will be assigned to corresponding particles.

Note: When “inherit object geometry” is disabled, only object
transforms will be transferred to birthed particles. This can
provide a significant speedup if the input objects have high
resolution meshes, but you do not need those meshes to be
assigned to the new particles (for example, if you want to align
particles to objects but don’t need those particles to inherit the
meshes).

Group members: if an input object is a group head, enabling this

setting will convert its constituent members into particles.

Object elements: if an input object mesh has multiple sub-

elements, enabling this setting will split them into multiple

particles.

Center all pivots: centers the pivots of extracted meshes.

Update Cache: click this to manually update the internal cache

which holds mesh data for all input objects.

Auto update: controls whether changes to input objects will

automatically update the operator’s internal mesh cache.

Hide after adding: controls whether objects will be hidden in the

scene after adding them to the listbox.

Note: The “hide after adding” setting is a sticky setting
(remembered between operators and Max sessions) that will
remain checked/unchecked depending on which state you leave
it in last.

Birth Objects Operator Continued

Particle Birth

Start: the start frame at which particles will be birthed.

End enabled: controls whether particles should be birthed over a

range of frames.

End: the end frame at which particles will be birthed.

Object Animation
Note: If particles leave the event which contains the Birth
Objects operator, their animation will no longer be updated by
the Birth Objects operator.

Inherit Position: particles will inherit the position changes of the

scene object they reference.

Inherit Rotation: particles will inherit the rotation changes of the

scene object they reference.

Inherit Scale: particles will inherit the scale changes of the scene

object they reference.

VRay Instance mtl override

None: no material override will be assigned to render instances of

the born particles.

Inherit from object: the material override for render instances of

born particles will be taken from the scene object they are

referencing.

Birth PRT operator

The Birth PRT operator allows you to birth new particles that are copies of particles from a PRTLoader object.

PRT birth

PRT object: the input object that contains PRT particles.

Start/End: controls the time range in which to birth new particles.

New particles only: controls whether only new particles will be

birthed each frame. A particle is considered new if its input ID has

not been processed on a previous frame, or its age is 0.

Input channels

Channels: controls which PRT data channels to copy into to birthed
particles.

Settings

Flip rotation: flips the w-component of quaternions loaded from PRT
data.

Birth Skeleton operator

The Birth Skeleton operator can be used to extract the curve skeleton from input meshes.

INFO:
The Birth Skeleton operator extracts the curve skeleton from
input meshes, and converts the segments of bones within the
extracted skeleton into particles. Using this method, you can
easily rig complex meshes like trees and foliage which would
otherwise be extremely difficult and time-consuming to
manually rig.

TIP:
Within the context of this operator, a “segment” is a single line
used to compose a bone. A “bone” is a curve composed of one
or more “segments”. A “skeleton” is the set of all “bones”
extracted from a mesh. Keep in mind that the skeleton extracted
from a mesh is not a typical anatomical skeleton (ie, this
operator is not meant to extract bones for the purpose of
character rigging), but a curve skeleton (ie, the algorithm will
attempt to convert tube-like sections of a mesh into segmented
curves). For this reason, the operator is ideal for extracting
bones from tube-like meshes (that’s why it works great for
plants, foliage, tentacles, etc), but it doesn’t work very well for
meshes that do not have many long, protruding parts.

Objects

Object list: the list of input objects whose skeleton will be extracted.

Particle birth

Start: controls the frame at which to birth new particles.

Pre-process

Relax mesh: applies laplacian relaxation to the input mesh, in order

to smooth out surface details prior to skeletonization.

Relax iterations: the number of relax iterations to apply to the

input mesh. The higher the iterations, the smoother the mesh will

be.

Enable MatID filter: when enabled, only faces matching the listed

material ID values will be skeletonized.

MatID: the list of face material IDs to skeletonize.

Birth Skeleton Operator

Continued

TIP:
Input meshes with a lot of small, bumpy surface details can cause
artifacts to appear in the resulting skeleton (junctions with
unnecessary bones pointing in random directions, bones not
properly following the overall surface curvature, etc). Performing
pre-process relaxation (or manually relaxing the geometry of the
mesh yourself) can help to improve the result of the
skeletonization process. An ideal mesh for skeletonization is one
that is perfectly smooth and composed only of long, tube-like
structures.
TIP:
Using the material ID filter is an easy way to exclude parts of a
mesh (like leaves, small twigs, etc) from skeletonization.

Optimization

Optimize skeleton: controls whether or not the raw extracted skeleton

will be optimized in various ways.

Note: The max angle and max length settings control how
individual bones will be optimized, by merging/reducing their
segments.

Max angle: connected segments whose angle is below this threshold

will be merged.

Max length: segments below the max angle threshold will only be

merged if their combined length is below this value.

Optimize junctions: in skeletons with clear junctions (places where

the endpoint of a bone touches the midpoint segment of another bone),

segments will be merged at junction points.

Note: Turning “optimize junctions” on may cause endpoints of
bones which touch midpoints segments of other bones to lose
contact with those midpoint segments, if those midpoint segments
are optimized away. Keeping this setting off will maximize junction
contact in skeletons extracted from meshes with clean, contiguous
topology.

Cull tiny junctions: single-segment bones generated at endpoint

junctions of multi-segment bones will be culled.

Note: The skeletonization algorithm has a tendency to create
junctions with multiple single-segment bones pointing outwards at
seemingly-random angles, in meshes that aren’t composed of
perfectly smooth tube-like structures. This setting uses a fairly
robust heuristic to minimize the creation of those bones.

Birth Skeleton Operator Continued

Misc

Min bone width: specified the minimum width of generated

particles.

Custom float data

Bone index

Stores the bone index of each segment into a channel within the

corresponding particle.

Channel: the custom data float channel where the bone index

value will be stored.

Bone segment targets

Bone segments each have two endpoints (the start and end of

each segment line), and bones are composed of multiple segments

ordered from base to tip. Thus, the target of each segment is the

segment before it (excluding the first segment in a bone, which

has no target). Thus, the bone segment target of a corresponding

particle will be the particle ID generated before it, as each bone is

processed.

Channel: the custom data float channel where the bone segment

target value will be stored.

Display

Visualize skeleton: draws the raw bone segment lines in the

viewport, on the frame they are generated.

Note: Each bone is given a random color, and the brightness
of the color applied to each bone segment increases from
base to tip. Thus, you can see the directionality of each bone
in the viewport by looking at the direction of the color
gradient for each bone when visualization is enabled. Bone
directionality is not controllable, and is determined internally
using an algorithm that examines bone radius, proximity, and
direction to nearby bones.

Birth Spline operator

The Birth Spline operator can be used to birth new particles on the curves of splines.

Splines

• Spline list: the list of input splines whose curves will be used to
birth particles.

Particle birth

Percent Along Spline: particles will be birthed at intervals along

splines based on a percentage of their total length.

Distance Along Spline: particles will be birthed at intervals along

splines based on a distance along their total length.

Knots: particles will be birthed on spline knots.

Interpolated Knots: particles will be birthed on implicit spline

knots, whose interpolated locations are based on the spline’s step

and optimization settings.

Simple Interpolation: percents and distances along the splines will

be relative to sub segment lengths and knot spacing.

Normalized Interpolation: percents and distances along the

splines will be relative to the normalized spline length, ignoring

segments lengths and knot spacing.

Start/End: controls the time range in which to birth new particles.

Percent %: the percent value used in “percent along spline” mode.

Distance: the distance value used in “distance along spline” mode.

Relative to scale: the distance value will be normalized against the

magnitude of the spline object’s scale vector, so that generated

points will be the same distance apart in world space.

Birth Spline Operator Continued

Birth index tracking

Save birth index: controls whether the 0-based index of the spline

in the input object list that a particle was birthed on is saved to a

the particle’s custom data channel.

Note: The birth index value will be additionally offset by the
number of subsplines the input objects have. So, each particle
will be given a unique birth index relative to both the input
object and its corresponding subspline count. So if two objects
are in the list and each object has 1 subsplines, the particle
birthed on the first subspline will have an index of 0, and the
particle birthed on the last subspline will have an index of 1. If
there are two objects in the list, and the first object has 2
subsplines and the second object has 5 subsplines, the particle
birthed on the first subspline will have an index of 0, and the
particle birthed on the last subspline will have an index of 6.

Channel: sets the data channel the birth index will be saved to

Birth Surface operator

The Birth Surface operator can be used to birth new particles on specific input mesh features, such as vertices,

face centers, etc.

Note: Instead of scattering particles randomly on surface
features, particles will be sequentially birthed on surface
features in the order that the features are indexed. For
example, when birthing particles on surface vertices, particle 1
will birth at the location of vertex 1, particle 2 will birth at the
location of vertex 2, etc.

Objects

Object list: the list of input objects whose surfaces will be used to

birth particles.

Particle birth

Surface feature type: the surface feature on which particles will

be birthed.

Start/End: controls the time range in which to birth new particles.

Enable every nth: when enabled, particles will be birthed at

regular frame intervals, instead of at every frame.

Nth value: the interval value at which to birth particles.

Split elements: controls whether the internal spawn parent value

of particles will be incremented depending on which element of a

surface the particle is birthed on.

Emit on substeps: controls whether particles will be birthed on

sub steps of the simulation, or only on whole frames.

Inherit matID: controls whether the material ID property of the

underlying surface will be copied to the appropriate particle data

channel.

INFO:
When a particle is birthed on a surface, its internal spawn
parent value is set to the index of that surface in the object list,
relative to the starting birthID of particles in the event. This
means that all particles on the same surface are considered
siblings of each other. Their sibling relationship can have an
effect on whether they will consider each other binding
candidates, among other things.

Sometimes you may not want all particles birthed on surface
features to be siblings with each other. For example, if your
input object is a shape with multiple spline sub-elements, you
would not want particles birthed on separate sub-elements to
be siblings of each other. By enabling “split elements”, the
spawn parent value of birthed particles will not only be
incremented for each object in the input list, but also for each
sub element of each object. This will create proper sibling
relationships between particles birthed on sub-elements of
input surfaces, and make it easier to do things like convert input
sub-element splines into separate constraint networks.

Birth index tracking

Save birth index: controls whether the 0-based index of the

surface in the input object list that a particle was birthed on is

saved to a the particle’s custom data channel

Note: The birth index value will be affected by whether or not
“split elements” is enabled.

Channel: sets the data channel the birth index will be saved to.

Birth Voxels operator

The Birth Voxels operator allows you to birth particles inside the volume or surface of scene objects, at uniform

spatial intervals.

Top Part of Rollout

Middle Part of Rollout

Voxel source objects

Object list: the list of input objects whose volumes

will be used to birth particles.

Particle birth

Start/End: controls the time range in which to birth

new particles.

Enable every nth: when enabled, particles will be

birthed at regular frame intervals, instead of at every

frame.

Nth value: the interval value at which to birth

particles.

Voxel settings

Mode: controls where particles will be birthed,

relative to the surface or volume of a particular input

object.

Sample type: controls the quality of samples used to

determine surface proximity, when birthing particles

in “Surface” mode.

Voxel size X/Y/Z: the size of individual voxels, in

which particles will be birthed.

Accuracy: controls the accuracy of the raycaster used

to compute information about whether a particle is

inside or outside of an object’s volume. Increase this

value for meshes that are self-intersecting or have

holes in them.

INFO:
If an input object’s surface is not closed, or is self-
intersecting, increasing the accuracy value can
improve results and reduce artifacts.

Cull duplicate voxels: when voxelizing multiple

input objects, enabling this setting will delete any

overlapping particles generated between the objects.

Birth Voxels Operator Continued

Bottom Part of Rollout

Progressive offsets

X/Y/Z %: the percent of progressive position offset applied to each

particle, relative to the overall size of the voxels.

Overall offsets

X/Y/Z %: the percent of overall position offset applied to each

particle, relative to the overall size of the voxels.

Jitter

X/Y/Z %: the percent of overall position jitter applied to each

particle, relative to the overall size of the voxels.

Particle Scale

Scale type: controls which size value particle will derive their scale

from.

Mult: a global scale multiplier applied to all particles.

Minimum distance from surface

Distance: particles within this distance from the surface will be culled.

Presets

Grains: choosing this preset will apply a progressive offset to

particles, such that their positions in space will form a tightly-knit

overlapping grid.

Grid: choosing this preset will remove all offsets from particles,

such that their positions in space will form a uniform, aligned grid.

Uniqueness

Seed: the seed value for all varied parameters.

Array operator

The Array operator allows you to spawn particles in circular patterns.

No help on this rollout at this time

No help on the rollout at this time

Array Axis

X/Y/Z: controls the axis around which particles will be spawned.

Coordinates

World Space: the selected axis will be relative to world-space.

Particle Space: the selected axis will be relative to the current

particle’s transform.

Array Settings

Offset: the distance between the current particle and spawned

particles.

Variation %: the per-particle percentage of variation to apply.

Rotate around axis: controls how much rotational offset to apply

to all spawned particles, around the array axis.

Min/Max angle: controls the size of the circular arc around the

array axis that particles will be spawned within.

Variation %: the per-particle percentage of variation to apply.

Delete parent: when enabled, the parent particle of the new array

particles will be deleted.

New Particles

By step size: controls whether particles will be spawned at steps (in

degrees) around the array arc.

By count: controls whether a static number of particles will be

spawned, regardless of the size of the array arc.

Array Operator Continued

Step size: the spawn step size, in degrees.

Count: the spawn count.

Variation %: the per-particle percentage of variation to apply.

Move outwards: when enabled, spawned particle velocities will be

affected such that they move outward from the current particle.

Velocity: the scale of the outward velocity vector to apply to

spawned particles.

Variation %: the per-particle percentage of variation to apply.

Divergence: controls the degrees of random divergence to apply to

outward velocity vectors

Uniqueness

Seed: the seed value for all varied parameters.

Branch operator

The Branch operator spawns child particles which travel at predictably-divergent angles relative to parent

particles. It can be used as the basis for effects like growing frost, lightning, etc.

No help on this rollout at this time

No help on the rollout at this time

Branches

Spacing

Distance: the minimum distance a parent particle must travel

before spawning a child.

Variation %: the per-particle percentage of variation to apply.

Divergence

Angle: the angle of divergence applied to spawned particles’

velocity trajectory.

Variation %: the per-particle percentage of variation to apply.

Count

Max: the maximum number of particles to spawn at each branch

event.

Variation %: the per-particle percentage of variation to apply.

Limits

Max depth: the maximum number of recursive branches that may

be spawned.

Variation %: the per-particle percentage of variation to apply.

Note: Increasing max depth increases the number of successive
recursive steps the branching algorithm can take. For example, a
max depth of 2 means that particles which enter the event may
spawn children, and those children may spawn children of their
own, but that third group of children (the grand-children of the
original particles) may not spawn further children. Increasing

the max depth will exponentially increase the total number of
particles that will be spawned over time.

Branch Operator Continued

Inheritance

Velocity

Inherit %: the amount of velocity child particles will inherit from

parent particles.

Variation %: the per-particle percentage of variation to apply.

Scale

Inherit %: the amount of scale child particles will inherit from

parent particles.

Variation %: the per-particle percentage of variation to apply

Parent
No Help at This Time

Test TRUE

Min depth enable: controls whether child particles that reach a

certain depth will test TRUE for output.

Min depth value: sets the minimum depth value required for child

particles to satisfy the condition.

Uniqueness

Seed: the seed value for all varied parameters.

	Simulation
	Understanding the Simulation Loop
	Simulation Validity

	Getting Started
	Creating a new tyFlow particle system
	Using the Editor
	Opening the Editor
	Navigating the Editor
	Right-click Menus
	Operator right-click menus:
	Editor hints

	Viewport Menu
	Creating Flows
	Creating Operators
	Creating Events
	Creating Connections
	Shaping connection wires
	Preset Flows

	tyFlow Object Settings
	Main Settings Rollout
	Time Step
	Network rendering

	Cache Settings Rollout
	Particle Bind Solver Settings Rollout
	Collision Compensation
	Particle Sleeping

	PhysX Rollout
	PhysX Rollout (continued)
	Sleep thresholds

	Retimer Rollout
	Interfaces
	Help Rollout
	Debugging Rollout
	About Rollout
	Update Rollout

	Operators
	Birth operator
	Birth Burst operator
	Birth Flow operator
	Birth Fluid operator
	Birth Intersections operator
	Birth Objects operator
	Birth PRT operator
	Birth Skeleton operator
	Birth Spline operator
	Birth Surface operator
	Birth Voxels operator
	Birth Voxels Operator Continued
	Array operator
	Branch operator

